Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14288
DC FieldValueLanguage
dc.contributor.authorSchlauch, Sonja
dc.date.accessioned2021-12-17T10:05:48Z-
dc.date.available2021-12-17T10:05:48Z-
dc.date.issued2004-12-30
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15515-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14288-
dc.description.abstractIn this paper, we consider a stirred liquid-liquid dispersion, i.e. a tank filled with two immiscible fluids which are stirred so that one of the phases disperses into the other one by building droplets. To model all relevant processes appearing in such a system, one has to account for the turbulent flow in the tank as well as for the population dynamical processes of the dispersed phase. We derive a system of equations that contains both occurring phenomena. Furthermore, the properties of the corresponding differential-algebraic equations describing the dynamics of the process will be determined in order to analyze the behavior of the system when solving it numerically.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherNavier-Stokes equationsen
dc.subject.otherpopulation dynamicsen
dc.titleModeling of stirred liquid-liquid dispersionsen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2004, 41en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200076D05 Navier-Stokes equationsen
tub.subject.msc200092D25 Population dynamicsen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
stirred_tank_model.pdf
Format: Adobe PDF | Size: 257.02 kB
stirred_tank_model.ps
Format: Postscript | Size: 656.92 kB

Item Export Bar