Please use this identifier to cite or link to this item:
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChu, Delin-
dc.contributor.authorLiu, Xinmin-
dc.contributor.authorMehrmann, Volker-
dc.description.abstractIn this paper we solve a long-standing open problem in numerical analysis called 'Van Loan's Curse'. We derive a new numerical method for computing the Hamiltonian Schur form of a Hamiltonian matrix that has no purely imaginary eigenvalues. The proposed method is numerically strongly backward stable, i.e., it computes the exact Hamiltonian Schur form of a nearby Hamiltonian matrix, and it is of complexity O(n^3) and thus Van Loan's curse is lifted. We demonstrate the quality of the new method by showing its performance for the benchmark collection of continuous-time algebraic Riccati equations.en
dc.subject.ddc510 Mathematiken
dc.subject.otherHamiltonian matrixen
dc.subject.otherskew-Hamiltonian matrixen
dc.subject.otherreal Hamiltonian Schur formen
dc.subject.otherreal skew-Hamiltonian Schur formen
dc.subject.othersymplectic URV-decompositionen
dc.subject.otherstable invariant subspaceen
dc.titleA numerically strongly stable method for computing the Hamiltonian Schur formen
dc.typeResearch Paperen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2004, 24en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200065F15 Eigenvalues, eigenvectorsen
tub.subject.msc200093B36 H∞-controlen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 255.66 kB
DownloadShow Preview
Format: Postscript | Size: 528.05 kB

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.