Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14305
For citation please use:
Main Title: L∞-Estimates for Approximated Optimal Control Problems
Author(s): Meyer, Christian
Roesch, Arnd
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15532
http://dx.doi.org/10.14279/depositonce-14305
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: An optimal control problem for a 2-d elliptic equation is investigated with pointwise control constraints. This paper is concerned with the discretization of the control by piecewise linear functions. The state and the adjoint state are discretized by linear finite elements. Approximation of order $h$ in the $L^\infty$-norm is proved in the main result. The theoretical result is confirmed by a numerical test.
Subject(s): linear-quadratic optimal control problems
error estimates
elliptic equations
numerical approximation
control constraints
Issue Date: 1-Sep-2004
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 49K20 Problems involving partial differential equations
49M25 Discrete approximations
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2004, 22
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
ppr2004_22.pdf
Format: Adobe PDF | Size: 356.2 kB
DownloadShow Preview
Thumbnail
ppr2004_22.ps.gz
Format: Unknown | Size: 328.06 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.