Please use this identifier to cite or link to this item:
For citation please use:
Main Title: An analytic characterization of the eigenvalues of self-adjoint extensions
Author(s): Behrndt, Jussi
Luger, Annemarie
Type: Research Paper
Abstract: Let à be a self-adjoint extension in K of a fixed symmetric operator A in K ⊆ K. Ananalytic characterization of the eigenvalues of à is given in terms of the Q-function and the parameter function in the Krein-Naimark formula. Here K and K are Krein spaces and it is assumed that à locally has the same spectral properties as a self-adjoint operator in a Pontryagin space.The general results are applied to a class of boundary value problems with λ-dependent boundary conditions.
Subject(s): Kreinspace
self-adjoint extension
Krein-Naimark formula
(locally) definitizable operator
(local) generalized Nevanlinna function
generalized pole and zero
boundary value problem
Issue Date: 28-Dec-2005
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 47B50 Operators on spaces with an indefinite metric
47B25 Symmetric and selfadjoint operators
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2005, 34
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 265.99 kB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.