Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14346
For citation please use:
Main Title: On two numerical methods for state-constrained elliptic control problems
Author(s): Meyer, Christian
Pruefert, Uwe
Tröltzsch, Fredi
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15573
http://dx.doi.org/10.14279/depositonce-14346
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: A linear-quadratic elliptic control problem with pointwise box constraints on the state is considered. The state-constraints are treated by a Lavrentiev type regularization. It is known that the Lagrange multipliers associated with the regularized state-constraints are functions in L^2. Moreover, the convergence of the optimal control of the regularized problem is proven for regularization parameter tending to zero. To solve the problem numerically, an interior point method and a primal-dual active set strategy are implemented and tested in function space.
Subject(s): linear elliptic equations
quadratic optimal control problem
pointwise state constraints
interior point method
active set strategy
Issue Date: 18-Feb-2005
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 49J20 Optimal control problems involving partial differential equations
49M20 Methods of relaxation type
90C51 Interior-point methods
65K10 Optimization and variational techniques
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2005, 05
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
ppr2005_05.ps.gz
Format: Unknown | Size: 6.66 MB
Download
ppr2005_05.pdf
Format: Adobe PDF | Size: 7.41 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.