Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14352
For citation please use:
Main Title: A New Bound on the Length of Minimum Cycle Bases
Author(s): Liebchen, Christian
Rizzi, Romeo
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15579
http://dx.doi.org/10.14279/depositonce-14352
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: For any weighted graph we construct a cycle basis of length O(W*log(n)*log(log(n))), where W denotes the sum of the weights of the edges. This improves the upper bound that was obtained only recently by Elkin et al. (2005) by a logarithmic factor. From below, our result has to be compared with Ω(W*log(n)), being the length of the minimum cycle bases (MCB) of a class of graphs with large girth.
Subject(s): combinatorial optimization
minimum cycle basis problem
weakly fundamental cycle bases
tree metrics
Issue Date: 2006
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 05C38 Paths and cycles
68R10 Graph theory
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2006, 32
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Report-032-2006.pdf
Format: Adobe PDF | Size: 256.41 kB
DownloadShow Preview
Thumbnail
Report-032-2006.ps.gz
Format: Unknown | Size: 289.36 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.