Please use this identifier to cite or link to this item:
For citation please use:
Main Title: A note on the eigenvalues of saddle point matrices
Author(s): Liesen, Jörg
Type: Research Paper
Abstract: Results of Benzi and Simoncini (Numer. Math. 103 (2006), pp.~173--196) on spectral properties of block $2\times 2$ matrices are generalized to the case of a symmetric positive semidefinite block at the (2,2) position. More precisely, a sufficient condition is derived when a (nonsymmetric) saddle point matrix of the form $[A\;\;B^T; -B\;C]$ with $A=A^T>0$, full rank $B$, and $C=C^T\geq 0$, is diagonalizable and has real and positive eigenvalues.
Subject(s): saddle point problem
Stokes problem
normal matrices
Issue Date: 1-Jun-2006
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 65F15 Eigenvalues, eigenvectors
65N22 Solution of discretized equations
65F50 Sparse matrices
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2006, 10
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 96.62 kB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.