Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14375
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVirnik, Elena
dc.date.accessioned2021-12-17T10:07:10Z-
dc.date.available2021-12-17T10:07:10Z-
dc.date.issued2006-01-06
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15602-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14375-
dc.description.abstractWe apply Algebraic Multigrid (AMG) as a preconditioner for solving large singular linear systems of the type $(I-T^T)x=0$ with GMRES. Here, $T$ is assumed to be the transition matrix of a Markov process. Although AMG and GMRES are originally designed for the solution of regular systems, with adequate adaptation their applicability can be extended to problems as described above.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otheralgebraic multigriden
dc.subject.otherpreconditioneren
dc.subject.otherlarge linear systemsen
dc.subject.otherMarkov chainsen
dc.titleAn Algebraic Multigrid Preconditioner for a class of singular M-Matricesen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2006, 03en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200065F10 Iterative methods for linear systemsen
tub.subject.msc200065M55 Multigrid methods; domain decompositionen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-03-2006.pdf
Format: Adobe PDF | Size: 178.01 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.