Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14379
For citation please use:
Main Title: Robust Control of Descriptor Systems
Author(s): Losse, Philip
Mehrmann, Volker
Poppe, Lisa Katrin
Reis, Timo
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15606
http://dx.doi.org/10.14279/depositonce-14379
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: The $\mathcal{H}_\infty$ control problem is studied for linear constant coefficient descriptor systems. Necessary and sufficient optimality conditions are derived in terms of deflating subspaces of even matrix pencils for index one systems as well as for higher index problems. It is shown that this approach leads to a more robust method in computing the optimal value $\gamma$ in contrast to other methods such as the widely used Riccati based approach. The results are illustrated by a numerical example.
Subject(s): descriptor system
$\mathcal{H}_\infty$-control
algebraic Riccati equation
even matrix pencil
deflating subspace
Issue Date: 4-Dec-2007
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 93B36 H∞-control
34A09 Implicit equations, differential-algebraic equations
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2007, 47
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
LosMehPopRei07.pdf
Format: Adobe PDF | Size: 224.55 kB
DownloadShow Preview
Thumbnail
LosMehPopRei07.ps.gz
Format: Unknown | Size: 215.35 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.