Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14379
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLosse, Philip-
dc.contributor.authorMehrmann, Volker-
dc.contributor.authorPoppe, Lisa Katrin-
dc.contributor.authorReis, Timo-
dc.date.accessioned2021-12-17T10:07:15Z-
dc.date.available2021-12-17T10:07:15Z-
dc.date.issued2007-12-04-
dc.identifier.issn2197-8085-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15606-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14379-
dc.description.abstractThe $\mathcal{H}_\infty$ control problem is studied for linear constant coefficient descriptor systems. Necessary and sufficient optimality conditions are derived in terms of deflating subspaces of even matrix pencils for index one systems as well as for higher index problems. It is shown that this approach leads to a more robust method in computing the optimal value $\gamma$ in contrast to other methods such as the widely used Riccati based approach. The results are illustrated by a numerical example.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherdescriptor systemen
dc.subject.other$\mathcal{H}_\infty$-controlen
dc.subject.otheralgebraic Riccati equationen
dc.subject.othereven matrix pencilen
dc.subject.otherdeflating subspaceen
dc.titleRobust Control of Descriptor Systemsen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2007, 47en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200093B36 H∞-controlen
tub.subject.msc200034A09 Implicit equations, differential-algebraic equationsen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
LosMehPopRei07.pdf
Format: Adobe PDF | Size: 224.55 kB
DownloadShow Preview
Thumbnail
LosMehPopRei07.ps.gz
Format: Unknown | Size: 215.35 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.