Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14392
For citation please use:
Main Title: New Length Bounds for Cycle Bases
Author(s): Elkin, Michael
Liebchen, Christian
Rizzi, Romeo
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15619
http://dx.doi.org/10.14279/depositonce-14392
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: Based on a recent work by Abraham, Bartal and Neiman (2007), we construct a strictly fundamental cycle basis of length O(n2) for any unweighted graph, whence proving the conjecture of Deo et al. (1982).
Subject(s): minimum cycle basis problem
tree metrics
Deo's conjecture
Issue Date: 2007
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2007, 22
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Report-022-2007.pdf
Format: Adobe PDF | Size: 283.52 kB
DownloadShow Preview
Thumbnail
Report-022-2007.ps.gz
Format: Unknown | Size: 277.96 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.