Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-14392
For citation please use:
For citation please use:
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Elkin, Michael | |
dc.contributor.author | Liebchen, Christian | |
dc.contributor.author | Rizzi, Romeo | |
dc.date.accessioned | 2021-12-17T10:07:30Z | - |
dc.date.available | 2021-12-17T10:07:30Z | - |
dc.date.issued | 2007 | |
dc.identifier.issn | 2197-8085 | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/15619 | - |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-14392 | - |
dc.description.abstract | Based on a recent work by Abraham, Bartal and Neiman (2007), we construct a strictly fundamental cycle basis of length O(n2) for any unweighted graph, whence proving the conjecture of Deo et al. (1982). | en |
dc.language.iso | en | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.ddc | 510 Mathematik | en |
dc.subject.other | minimum cycle basis problem | en |
dc.subject.other | tree metrics | en |
dc.subject.other | Deo's conjecture | en |
dc.title | New Length Bounds for Cycle Bases | en |
dc.type | Research Paper | en |
tub.accessrights.dnb | free | en |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
tub.series.issuenumber | 2007, 22 | en |
tub.series.name | Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin | en |
dc.type.version | submittedVersion | en |
tub.affiliation | Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik | de |
Appears in Collections: | Technische Universität Berlin » Publications |
Files in This Item:
Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.