Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14392
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElkin, Michael
dc.contributor.authorLiebchen, Christian
dc.contributor.authorRizzi, Romeo
dc.date.accessioned2021-12-17T10:07:30Z-
dc.date.available2021-12-17T10:07:30Z-
dc.date.issued2007
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15619-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14392-
dc.description.abstractBased on a recent work by Abraham, Bartal and Neiman (2007), we construct a strictly fundamental cycle basis of length O(n2) for any unweighted graph, whence proving the conjecture of Deo et al. (1982).en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherminimum cycle basis problemen
dc.subject.othertree metricsen
dc.subject.otherDeo's conjectureen
dc.titleNew Length Bounds for Cycle Basesen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2007, 22en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Report-022-2007.pdf
Format: Adobe PDF | Size: 283.52 kB
DownloadShow Preview
Thumbnail
Report-022-2007.ps.gz
Format: Unknown | Size: 277.96 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.