Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14424
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoewy, Raphael
dc.contributor.authorMehrmann, Volker
dc.date.accessioned2021-12-17T10:08:08Z-
dc.date.available2021-12-17T10:08:08Z-
dc.date.issued2008-02-11
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15651-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14424-
dc.description.abstractWe discuss the converse of a theorem of Potter stating that if the matrix equation $AB = \omega BA$ is satisfied with $\omega$ a primitive $q$th root of unity, then $A^q + B^q = (A+B)^q$. We show that both conditions have to be modified to get a converse statement and we present a characterization when the converse holds for these modified conditions and $q=3$ and a conjecture for the general case. We also present some further partial results and conjectures.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherquasi-commutative matricesen
dc.subject.otherroots of unityen
dc.subject.otherPotter's theoremen
dc.titleA note on Potter's theorem for quasi-commutative matricesen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2008, 04en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200015A27 Commutativityen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
LoeM07_ppt.pdf
Format: Adobe PDF | Size: 168 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.