Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14430
For citation please use:
Main Title: Approximability of 3- and 4-hop bounded disjoint paths problems
Author(s): Bley, Andreas
Neto, Jose
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15657
http://dx.doi.org/10.14279/depositonce-14430
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: A path is said to be l-bounded if it contains at most l edges. We consider two types of l-bounded disjoint paths problems. In the maximum edge- or node-disjoint path problems MEDP(l) and MNDP(l), the task is to find the maximum number of edge- or node-disjoint l-bounded (s,t)-paths in a given graph G with source s and sink t, respectively. In the weighted edge- or node-disjoint path problems WEDP(l) and WNDP(l), we are also given an integer k and non-negative edge weights, and seek for a minimum weight subgraph of G that contains k edge- or node-disjoint l-bounded (s,t)-paths. Both problems are of great practical relevance in the planning of fault-tolerant communication networks, for example.
Subject(s): graph algorithms
length-bounded paths
complexity
approximation algorithms
Issue Date: 2009
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2009, 24
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Report-024-2009.pdf
Format: Adobe PDF | Size: 190.63 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.