Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14465
For citation please use:
Main Title: Analysis of operator differential-algebraic equations arising in fluid dynamics. Part I. The finite dimensional case
Author(s): Emmrich, Etienne
Mehrmann, Volker
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15692
http://dx.doi.org/10.14279/depositonce-14465
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: Existence and uniqueness of solutions to initial value problems for a class of abstract differential-algebraic equations (DAEs) is shown. The class of equations cover, in particular, the spatially semi-discretized Stokes and Oseen problem describing the motion of an incompressible or nearly incompressible Newtonian fluid. Moreover, we derive explicit solution formulas.
Subject(s): differential-algebraic equation
strangeness-index
existence
uniqueness
consistency
Duhamel's principle
Stokes equation
Oseen equation
Issue Date: 1-Jun-2010
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 34A09 Implicit equations, differential-algebraic equations
34G10 Linear equations
76D07 Stokes and related (Oseen, etc.) flows
34H05 Control problems
65M99 None of the above, but in this section
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2010, 12
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
EmmM10_ppta.pdf
Format: Adobe PDF | Size: 288.52 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.