Please use this identifier to cite or link to this item:
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlath, Jochen
dc.contributor.authorEldon, Bjarki
dc.contributor.authorGonzález Casanova, Adrin
dc.contributor.authorKurt, Noemi
dc.description.abstractWe investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long genealogical jumps (the latter modeling the effect of seed-dormancy). We assume that the length of these long jumps scales like a power $N^\beta$ of the original population size $N$, thus giving rise to a `strong' seed-bank effect. For a certain range of $\beta$, we prove that the ancestral process of a sample of $n$ individuals converges under a non-classical time-scaling to Kingman's $n-$coalescent. Further, for a wider range of parameters, we analyze the time to the most recent common ancestor of two individuals analytically and by simulation.en
dc.subject.ddc510 Mathematiken
dc.subject.otherrroblems related to evolutionen
dc.subject.otherrenewal theoryen
dc.titleGenealogy of a Wright-Fisher model with strong seed bank componenten
dc.typeResearch Paperen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2012, 37en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200092D15 Problems related to evolutionen
tub.subject.msc200060K05 Renewal theoryen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 626.84 kB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.