Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14512
For citation please use:
Main Title: Numerical analysis of Gaussian approximations in quantum chemistry
Author(s): Bachmayr, Markus
Chen, Huajie
Schneider, Reinhold
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15739
http://dx.doi.org/10.14279/depositonce-14512
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: Bases of atomic-like functions provide a natural, physically motivated description of electronic states, and Gaussian-type orbitals are the most widely used basis functions in molecular simulations. This paper aims at developing a systematic analysis of numerical approximations based on linear combinations of some Gaussian-type orbitals. We give a priori error estimates for Hermite-type Gaussian bases and for even-tempered Gaussian bases. Some numerical results are presented to support the theory.
Subject(s): eigenvalue problems
error bounds
Issue Date: 9-Aug-2012
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 65N25 Eigenvalue problems
65N15 Error bounds
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2012, 27
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-27-2012.pdf
Format: Adobe PDF | Size: 285.4 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.