Please use this identifier to cite or link to this item:
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKorzec, Maciek
dc.contributor.authorNayar, Piotr
dc.contributor.authorRybka, Piotr
dc.description.abstractA spatially two-dimensional sixth order PDE describing the evolution of a growing crystalline surface h(x,y,t) that undergoes faceting is considered with periodic boundary conditions, such as its reduced one-dimensional version. These equation are expressed in terms of the slopes $u_1=h_{x}$ and $u_2=h_y$ to establish the existence of global, connected attractors for both of the equations. Since unique solutions are guaranteed for initial conditions in $\dot H^2_{per}$, we consider the solution operator $S(t): \dot H^2_{per} \rightarrow \dot H^2_{per}$, to gain the results. We prove the necessary continuity, dissipation and compactness properties.en
dc.subject.ddc510 Mathematiken
dc.subject.otherglobal attractoren
dc.subject.otherlong-time dynamicsen
dc.subject.otherCahn-Hilliard type equationen
dc.subject.otherhigh order PDEen
dc.titleGlobal attractors of sixth order PDEs describing the faceting of growing surfacesen
dc.typeResearch Paperen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2013, 05en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200035G25 Initial value problems for nonlinear higher-order PDE, nonlinear evolution equationsen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 477.29 kB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.