Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14569
For citation please use:
Main Title: A phase-field model for solid-state dewetting and its sharp-interface limit
Author(s): Dziwnik, Marion
Münch, Andreas
Wagner, Barbara
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15796
http://dx.doi.org/10.14279/depositonce-14569
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We propose a phase field model for solid state dewetting where the surface energy is weakly anisotropic. The evolution is based on the Cahn-Hilliard equation with degenerate mobility and a free boundary condition at the film-substrate contact line. We derive the corresponding sharp interface limit via matched asymptotic analysis involving multiple inner layers. The resulting sharp interface model is consistent with the pure surface diffusion model. In addition, we show that the natural boundary conditions, as indicated from the first variation of the total free energy, imply a contact angle condition for the dewetting front, which, in the isotropic case, is consistent with the well-known Young's equation.
Subject(s): phase field model
matched asymptotic expansions
sharp interface model
free boundaries
dewetting solid films
Issue Date: 12-Dec-2014
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 41A60 Asymptotic approximations, asymptotic expansions
76M45 Asymptotic methods, singular perturbations
76Dxx Incompressible viscous fluids
76Txx Two-phase and multiphase flows
35B40 Asymptotic behavior of solutions
35C20 Asymptotic expansions
49Jxx Existence theories
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2014, 40
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-40-2014.pdf
Format: Adobe PDF | Size: 432.26 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.