Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14602
For citation please use:
Main Title: When a thin periodic layer meets corners: asymptotic analysis of a singular Poisson problem
Author(s): Delourme, Bérangère
Schmidt, Kersten
Semin, Adrien
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15829
http://dx.doi.org/10.14279/depositonce-14602
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: The present work deals with the resolution of the Poisson equation in a bounded domain made of a thin and periodic layer of finite length placed into a homogeneous medium. We provide and justify a high order asymptotic expansion which takes into account the boundary layer effect occurring in the vicinity of the periodic layer as well as the corner singularities appearing in the neighborhood of the extremities of the layer. Our approach combines the method of matched asymptotic expansions and the method of periodic surface homogenization, and a complete justification is included in the paper or its appendix.
Subject(s): asymptotic analysis
periodic surface homogenization
singular asymptotic expansions
Issue Date: 23-Dec-2015
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 35C20 Asymptotic expansions
35A20 Analytic methods, singularities
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2015, 34
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-34-2015.pdf
Format: Adobe PDF | Size: 1.14 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.