Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14633
For citation please use:
Main Title: Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric
Author(s): Binder, Thomas
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15860
http://dx.doi.org/10.14279/depositonce-14633
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We examine the centroaffine geometry of Tchebychev surfaces. By choosing local parameters adapted to the problem, it is possible to understand the integrability conditions. We introduce regular and singular surfaces and prove an existence theorem for regular ones. We will show that there are no Tchebychev surfaces with nonzero constant curvature metric, thus reducing the problem to $K=0$, which has already been solved.
Subject(s): centroaffine differential geometry
Tchebychev surfaces
Issue Date: 1-Nov-1998
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53A15 Affine differential geometry
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 1998, 581
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_581-1998.pdf
Format: Adobe PDF | Size: 4.86 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.