Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14648
For citation please use:
Main Title: Sharp-Interface Formation during Lithium Intercalation into Silicon
Author(s): Meca, Esteban
Münch, Andreas
Wagner, Barbara
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15875
http://dx.doi.org/10.14279/depositonce-14648
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: In this study we present a phase-field model that describes the process of intercalation of Li ions into a layer of an amorphous solid such as a-Si. The governing equations couple a viscous Cahn-Hilliard-Reaction model with elasticity in the framework of the Cahn-Larché system. We discuss the parameter settings and flux conditions at the free boundary that lead to the formation of phase boundaries having a sharp gradient in ion concentration between the initial state of the solid layer and the intercalated region. We carry out a matched asymptotic analysis to derive the corresponding sharp-interface model that also takes into account the dynamics of triple points where the sharp interface in the bulk of the layer intersects the free boundary. We numerically compare the interface motion predicted by the sharp-interface model with the long-time dynamics of the phase-field model.
Subject(s): asymptotic analysis
phase-field model
interface dynamics
numerical methods
Issue Date: 26-Feb-2016
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 74N20 Dynamics of phase boundaries
35Q72 Other equations from mechanics
35B25 Singular perturbations
74S10 Finite volume methods
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2016, 09
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-9-2016.pdf
Format: Adobe PDF | Size: 587.86 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.