Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14668
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGillis, Nicolas
dc.contributor.authorMehrmann, Volker
dc.contributor.authorSharma, Punit
dc.date.accessioned2021-12-17T10:15:09Z-
dc.date.available2021-12-17T10:15:09Z-
dc.date.issued2017-04-12
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15895-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14668-
dc.description.abstractIn this paper, we study the nearest stable matrix pair problem: given a square matrix pair (E,A), minimize the Frobenius norm of (∆E,∆A) such that (E+\∆E,A+∆A) is a stable matrix pair. We propose a reformulation of the problem with a simpler feasible set byintroducing dissipative Hamiltonian (DH) matrix pairs: A matrix pair (E,A) is DH if A=(J-R)Q with skew-symmetric J, positive semidefinite R, and an invertible Q such that Q^TE is positive semidefinite. This reformulation has a convex feasible domain onto which it is easy to project. This allows us to employ a fast gradient method to obtain a nearby stable approximation of a given matrix pair.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherdissipative Hamiltonian systemen
dc.subject.otherdistance to stabilityen
dc.subject.otherconvex optimizationen
dc.titleComputing nearest stable matrix pairsen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2017, 04en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200093D09 Robust stabilityen
tub.subject.msc200065F15 Eigenvalues, eigenvectorsen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-04-2017.pdf
Format: Adobe PDF | Size: 396.98 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.