Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14681
For citation please use:
Main Title: First order structure-preserving perturbation theory for eigenvalues of symplectic matrices
Author(s): Sosa, Fredy
Moro, Julio
Mehl, Christian
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15908
http://dx.doi.org/10.14279/depositonce-14681
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: A first order perturbation theory for eigenvalues of real or complex J-symplectic matrices under structure- preserving perturbations is developed. As main tools structured canonical forms and Lidskii-like formulas for eigenvalues of multiplicative perturbations are used. Explicit formulas, depending only on appropriately normalized left and right eigenvectors, are obtained for the leading terms of asymptotic expansions describing the perturbed eigenvalues. Special attention is given to eigenvalues on the unit circle, especially to the exceptional eigenvalues ±1, whose behavior under structure-preserving perturbations is known to differ significantly from the behavior under general perturbations. Several numerical examples are used to illustrate the asymptotic expansions.
Subject(s): eigenvalues
singular values
eigenvectors
perturbation theory
J-symplectic matrices
Issue Date: 28-May-2018
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 15A18 Eigenvalues, singular values, and eigenvectors
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2018, 04
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-04-2018.pdf
Format: Adobe PDF | Size: 1.18 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.