Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14683
For citation please use:
Main Title: Robust port-Hamiltonian representations of passive systems
Author(s): Beattie, Christopher
Mehrmann, Volker
Van Dooren, Paul
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15910
http://dx.doi.org/10.14279/depositonce-14683
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We discuss the problem of robust representations of stable and passive transfer functions in particular coordinate systems, and focus in particular on the so-called port-Hamiltonian representations. Such representations are typically far from unique and the degrees of freedom are related to the solution set of the so-called Kalman-Yakubovich-Popov linear matrix inequality (LMI). In this paper we analyze robustness measures for the different possible representations and relate it to quality functions defined in terms of the eigenvalues of the matrix associated with the LMI. In particular, we look at the analytic center of this LMI. From this, we then derive inequalities for the passivity radius of the given model representation.
Subject(s): port-Hamiltonian system
positive real system
stability radius
passivity radius
linear matrix inequality
Issue Date: 17-Jan-2018
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 93D09 Robust stability
93C05 Linear systems
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2018, 02
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
BeaMV18_ppt.pdf
Format: Adobe PDF | Size: 437.65 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.