Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14684
For citation please use:
Main Title: Linear algebra properties of dissipative Hamiltonian descriptor systems
Author(s): Mehl, Christian
Mehrmann, Volker
Wojtylak, Michal
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15911
http://dx.doi.org/10.14279/depositonce-14684
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: A wide class of matrix pencils connected with dissipative Hamiltonian descriptor systems is investigated. In particular, the following properties are shown: all eigenvalues are in the closed left half plane, the nonzero finite eigenvalues on the imaginary axis are semisimple, the index is at most two, and there are restrictions for the possible left and right minimal indices. For the case that the eigenvalue zero is not semisimple, a structure-preserving method is presented that perturbs the given system into a Lyapunov stable system.
Subject(s): port Hamiltonian system
descriptor system
dissipative Hamiltonian system
matrix pencil
singular pencil
Kronecker canonical form
Lyapunov stability
Issue Date: 6-Jan-2018
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 15A18 Eigenvalues, singular values, and eigenvectors
15A21 Canonical forms, reductions, classification
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2018, 01
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-01-2018.pdf
Format: Adobe PDF | Size: 425.74 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.