Please use this identifier to cite or link to this item:
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMehl, Christian
dc.contributor.authorMehrmann, Volker
dc.contributor.authorWojtylak, Michal
dc.description.abstractA wide class of matrix pencils connected with dissipative Hamiltonian descriptor systems is investigated. In particular, the following properties are shown: all eigenvalues are in the closed left half plane, the nonzero finite eigenvalues on the imaginary axis are semisimple, the index is at most two, and there are restrictions for the possible left and right minimal indices. For the case that the eigenvalue zero is not semisimple, a structure-preserving method is presented that perturbs the given system into a Lyapunov stable system.en
dc.subject.ddc510 Mathematiken
dc.subject.otherport Hamiltonian systemen
dc.subject.otherdescriptor systemen
dc.subject.otherdissipative Hamiltonian systemen
dc.subject.othermatrix pencilen
dc.subject.othersingular pencilen
dc.subject.otherKronecker canonical formen
dc.subject.otherLyapunov stabilityen
dc.titleLinear algebra properties of dissipative Hamiltonian descriptor systemsen
dc.typeResearch Paperen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2018, 01en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200015A18 Eigenvalues, singular values, and eigenvectorsen
tub.subject.msc200015A21 Canonical forms, reductions, classificationen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 425.74 kB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.