Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14686
For citation please use:
Main Title: Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems
Author(s): Beattie, Christopher A.
Gugercin, Serkan
Mehrmann, Volker
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15913
http://dx.doi.org/10.14279/depositonce-14686
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We examine interpolatory model reduction methods that are well-suited for treating large scale port-Hamiltonian differential-algebraic systems in a way that is able to preserve and take advantage of the underlying structural features of the system. We introduce approaches that incorporate regularization together with prudent selection of interpolation data. We focus on linear time-invariant systems and present a systematic treatment of a variety of model classes that include combinations of index-1 and index-2 systems, describing in particular how constraints may be represented in the transfer function and then preserved with interpolatory methods. We propose an algorithm to generate effective interpolation data and illustrate its effectiveness on a %two numerical example.
Subject(s): port-Hamiltonian system
positive-real system
model reduction
differential-agebraic system
Issue Date: 27-Nov-2019
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 34H05 Control problems
65L70 Error bounds
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2019, 10
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
BeaGM19_ppt.pdf
Format: Adobe PDF | Size: 383.9 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.