Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14689
For citation please use:
Main Title: Isoparametric surfaces in 3-dimensional de Sitter space and anti-de Sitter space
Author(s): Liu, Huili
Zhao, Guosong
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15916
http://dx.doi.org/10.14279/depositonce-14689
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: A spacelike surface $M$ in 3-dimensional de Sitter space $\mathbb{S}^3_1$ or 3-dimensional anti-de Sitter space $\mathbb{H}^3_1$ is called isoparametric, if $M$ has constant principle curvatures. A timelike surface is called isoparametric, if its minimal polynomial of the shape operator is constant. In this paper, we determine the spacelike isoparametric surfaces and the timelike isoparametric surfacesx in $\mathbb{S}^3_1$ and $\mathbb{H}^3_1$.
Subject(s): isoparametric surface
de Sitter space
anti-de Sitter space
principal curvature
Issue Date: 1-Feb-1999
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53C50 Lorentz manifolds, manifolds with indefinite metrics
53C40 Global submanifolds
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 1999, 657
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_657-1999.pdf
Format: Adobe PDF | Size: 5.46 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.