Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14697
For citation please use:
Main Title: Proximity bounds for random integer programs
Author(s): Celaya, Marcel
Henk, Martin
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15924
http://dx.doi.org/10.14279/depositonce-14697
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We study proximity bounds within a natural model of random integer programs of the type max cx : Ax = b, X œ Z >= 0, where A œ Z^mXn of rank m, b œ Z^m and c œ Z^n. We prove that (up to a constant depending on the dimension n) the proximity is generally bounded by ∆m(A)^1/(n-m), where ∆m(A) is the maximal absolute value of an m x m subdeterminant of A. This is significantly better than the best deterministic bounds which are linear in ∆m(A).
Subject(s): Integer programming
lattices in n dimensions
convex bodies in n dimensions
Issue Date: 11-Dec-2020
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: integer programming
lattices in n dimensions
convex bodies in n dimensions
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2020, 05
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint-05-2020.pdf
Format: Adobe PDF | Size: 489.03 kB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.