Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Minimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space forms
Author(s): Vrancken, Luc
Type: Research Paper
Abstract: We study minimal Lagrangian immersions from an indefinite real space form $M^n_s(c)$ into an indefinite complex space form $\tilde{M}^n_s(4\tilde{c})$. Provided that $c\not= \tilde{c}$, we show that $M^n$ has to be flat and we obtain an explicit description of the immersion. In the case the metric is positive definite or Lorentzian, this result was respectively obtained by Ejiri [4] and by Kriele and the author [5]. In the case that $c = \tilde{c}$, this theorem is no longer true, see for instance the examples discovered in [3] by Chen and the author.
Subject(s): Lagrangian
constant sectional curvature
complex space forms
Issue Date: 29-Jan-1999
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53B35 Hermitian and Kählerian structures
53B30 Lorentz metrics, indefinite metrics
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 1999, 644
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 4.99 MB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.