Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14711
For citation please use:
Main Title: Centroaffine differential geometry and its relations to horizontal submanifolds
Author(s): Vrancken, Luc
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15938
http://dx.doi.org/10.14279/depositonce-14711
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We relate centroaffine immersions $f:M^n\to R^{n+1}$ to horizontal immersions $g$ of $M^n$ into $S^{2n+1}_{n+1}(1)$ or $H^{2n+1}_n(-1)$. We also show that $f$ is an equiaffine sphere, i.e. the centroaffine normal is a constant multiple of the Blaschke normal, if and only if $g$ is minimal.
Subject(s): affine differential geometry
Issue Date: 29-Jan-1999
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53A15 Affine differential geometry
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 1999, 641
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_641-1999.pdf
Format: Adobe PDF | Size: 5.92 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.