Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14734
For citation please use:
Main Title: Tchebychev surfaces of S^3(1) with constant curvature functions
Author(s): Lusala, Tsasa
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15961
http://dx.doi.org/10.14279/depositonce-14734
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: We prove that Tchebychev surfaces of $\mathbb{S}^3(1)$ with constant mean curvature or with shape operator of constant squared length are isoparametric. We summarize our results in a survey of types of isoparametric and non-isoparametric Tchebychev surfaces.
Subject(s): Tchebychev surfaces in S^3(1)
locally symmetric surfaces
isoparametric surfaces
Issue Date: 10-Dec-2000
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53B25 Local submanifolds
53A15 Affine differential geometry
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2000, 677
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_677-2000.pdf
Format: Adobe PDF | Size: 8.95 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.