Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14740
For citation please use:
Main Title: Affine surfaces in 4-dimensional affine space with planar geodesics
Author(s): Vrancken, Luc
Type: Research Paper
URI: https://depositonce.tu-berlin.de/handle/11303/15967
http://dx.doi.org/10.14279/depositonce-14740
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: In this paper we study nondegenerate affine immersions, as introduced by Nomizu and Pinkall, of an affine surface $(M,\nabla)$ in the 4-dimensional affine space $(\mathbb{R}^4,D)$. Using an existence and uniqueness theorem, we classify all such immersions $\phi$ which map the $\nabla$-geodesics of $M$ into planar curves in $\mathbb{R}^4$. These theorems generalize results previously obtained in the Riemannian, the equiaffine and the centroaffine case.
Subject(s): affine differential geometry
Issue Date: 1-Feb-2000
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
MSC 2000: 53A15 Affine differential geometry
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2000, 663
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Preprint_663-2000.pdf
Format: Adobe PDF | Size: 11.48 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.