Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Scheduling Parallel Jobs to Minimize Makespan
Author(s): Johannes, Berit
Type: Research Paper
Abstract: We consider the NP-hard problem of scheduling parallel jobs with release dates on identical parallel machines to minimize the makespan. A parallel job requires simultaneously a pre-specified, job-dependent number of machines when being processed. Our main result is the following. The makespan of a (non-preemptive) schedule constructed by any listscheduling algorithm is within a factor of 2 of the optimal preemptive makespan. This gives the best known approximation algorithms for both the preemptive and the non-preemptive variant of the problem, improving upon previously known performance guarantees of 3. We also show that no listscheduling algorithm can achieve a better performance guarantee than 2 for the non-preemptive problem, no matter which priority list is chosen. Since listscheduling also works in the online setting in which jobs arrive over time and the length of a job becomes only known when it completes, the main result yields a deterministic online algorithm with competitive ratio 2 as well. In addition, we consider a different online model in which jobs arrive one by one and need to be scheduled before the next job becomes known. In this context, no listscheduling algorithm has a constant competitive ratio. We present the first online algorithm for scheduling parallel jobs with a constant competitive ratio. We also prove a new information-theoretic lower bound of 2:25 for the competitive ratio of any deterministic online algorithm for this model.
Subject(s): scheduling
approximation algorithms
parallel jobs
multiprocessor tasks
online algorithms
Issue Date: 2001
Date Available: 17-Dec-2021
Language Code: en
DDC Class: 510 Mathematik
Series: Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin
Series Number: 2001, 723
ISSN: 2197-8085
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 222.77 kB
DownloadShow Preview
Format: Postscript | Size: 327.59 kB

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.