Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-14749
For citation please use:
For citation please use:
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mehl, Christian | |
dc.contributor.author | Mehrmann, Volker | |
dc.contributor.author | Xu, Hongguo | |
dc.date.accessioned | 2021-12-17T10:18:39Z | - |
dc.date.available | 2021-12-17T10:18:39Z | - |
dc.date.issued | 2001-11-05 | |
dc.identifier.issn | 2197-8085 | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/15976 | - |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-14749 | - |
dc.description.abstract | We discuss matrix pencils with a double symmetry structure that arise in the Hartree-Fock model in quantum chemistry. We derive anti-triangular condensed forms from which the eigenvalues can be read off. Ideally these would be condensed forms under unitary equivalence transformations that can be turned into stable (structure preserving) numerical methods. For the pencils under consideration this is a difficult task and not always possible. We present necessary and sufficient conditions when this is possible. If this is not possible then we show how we can include other transformations that allow to reduce the pencil to an almost anti-triangular form. | en |
dc.language.iso | en | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.ddc | 510 Mathematik | en |
dc.subject.other | selfadjoint matrix | en |
dc.subject.other | skew-adjoint matrix | en |
dc.subject.other | matrix pencil | en |
dc.subject.other | Hartree-Fock model | en |
dc.subject.other | anti-triangular form | en |
dc.subject.other | canonical form | en |
dc.subject.other | condensed form | en |
dc.subject.other | skew-Hamiltonian | en |
dc.subject.other | Hamiltonian pencil | en |
dc.title | On doubly structured matrices and pencils that arise in linear response theory | en |
dc.type | Research Paper | en |
tub.accessrights.dnb | free | en |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
tub.series.issuenumber | 2001, 713 | en |
tub.series.name | Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin | en |
dc.type.version | submittedVersion | en |
tub.affiliation | Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik | de |
tub.subject.msc2000 | 65F15 Eigenvalues, eigenvectors | en |
tub.subject.msc2000 | 15A21 Canonical forms, reductions, classification | en |
Appears in Collections: | Technische Universität Berlin » Publications |
Files in This Item:
Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.