Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14749
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMehl, Christian
dc.contributor.authorMehrmann, Volker
dc.contributor.authorXu, Hongguo
dc.date.accessioned2021-12-17T10:18:39Z-
dc.date.available2021-12-17T10:18:39Z-
dc.date.issued2001-11-05
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15976-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14749-
dc.description.abstractWe discuss matrix pencils with a double symmetry structure that arise in the Hartree-Fock model in quantum chemistry. We derive anti-triangular condensed forms from which the eigenvalues can be read off. Ideally these would be condensed forms under unitary equivalence transformations that can be turned into stable (structure preserving) numerical methods. For the pencils under consideration this is a difficult task and not always possible. We present necessary and sufficient conditions when this is possible. If this is not possible then we show how we can include other transformations that allow to reduce the pencil to an almost anti-triangular form.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherselfadjoint matrixen
dc.subject.otherskew-adjoint matrixen
dc.subject.othermatrix pencilen
dc.subject.otherHartree-Fock modelen
dc.subject.otheranti-triangular formen
dc.subject.othercanonical formen
dc.subject.othercondensed formen
dc.subject.otherskew-Hamiltonianen
dc.subject.otherHamiltonian pencilen
dc.titleOn doubly structured matrices and pencils that arise in linear response theoryen
dc.typeResearch Paperen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2001, 713en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
dc.type.versionsubmittedVersionen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Mathematikde
tub.subject.msc200065F15 Eigenvalues, eigenvectorsen
tub.subject.msc200015A21 Canonical forms, reductions, classificationen
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
mmx2.pdf
Format: Adobe PDF | Size: 29.73 MB
DownloadShow Preview
Thumbnail
mmx2.ps
Format: Postscript | Size: 486.63 kB
Download

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.