Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14767
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaertens, Thomas-
dc.contributor.authorSchöll, Eckehard-
dc.contributor.authorRuiz, Jorge-
dc.contributor.authorHövel, Philipp-
dc.date.accessioned2021-12-21T13:50:15Z-
dc.date.available2021-12-21T13:50:15Z-
dc.date.issued2021-
dc.identifier.issn0925-2312-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15994-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14767-
dc.description.abstractWe investigate how locomotory behavior is generated in the brain focusing on the paradigmatic connectome of nematode Caenorhabditis elegans (C. elegans) and on neuronal and muscular activity patterns that control forward locomotion. We map the neuronal network of the worm as a multilayer network that takes into account various neurotransmitters and neuropeptides. Using logistic regression analysis, we predict the neurons of the locomotory subnetwork. Combining Hindmarsh-Rose equations for neuronal activity with a leaky integrator model for muscular activity, we study the dynamics within this subnetwork and predict the forward locomotion of the worm using a harmonic wave model. The application of time-delayed feedback control reveals synchronization patterns that contribute to a coordinated locomotion of C. elegans. Analyzing the synchronicity when the activity of certain neurons is silenced informs us about their significance for a coordinated locomotory behavior. Since the information processing is the same in humans and C. elegans, the study of the locomotory circuitry provides new insights for understanding how the brain generates motion behavior.en
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherconnectome of C. elegansen
dc.subject.othermultilayer networksen
dc.subject.otherneuronal dynamicsen
dc.subject.othercentral pattern generatorsen
dc.subject.othermotion behavioren
dc.subject.otherharmonic wavesen
dc.subject.othersynchronizationen
dc.subject.otherfeedback controlen
dc.subject.otherHindmarsh-Rose modelen
dc.titleMultilayer network analysis of C. elegans: Looking into the locomotory circuitryen
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1872-8286-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1016/j.neucom.2020.11.015en
dcterms.bibliographicCitation.journaltitleNeurocomputingen
dcterms.bibliographicCitation.originalpublisherplaceAmsterdamen
dcterms.bibliographicCitation.volume427en
dcterms.bibliographicCitation.pageend261en
dcterms.bibliographicCitation.pagestart238en
dcterms.bibliographicCitation.originalpublishernameElsevieren
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Theoretische Physik » FG Nichtlineare Dynamik und Kontrollede
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons