Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H2O2 Generation
Author(s): Krishnaraj, Chidharth
Jena, Himanshu Sekhar
Bourda, Laurens
Laemont, Andreas
Pachfule, Pradip
Roeser, Jerome
Chandran, C. Vinod
Borgmans, Sander
Rogge, Sven M. J.
Leus, Karen
Stevens, Christian, V
Martens, Johan A.
Van Speybroeck, Veronique
Breynaert, Eric
Thomas, Arne
Van der Voort, Pascal
Type: Article
Abstract: Photocatalytic reduction of molecular oxygen is a promising route toward sustainable production of hydrogen peroxide (H2O2). This challenging process requires photoactive semiconductors enabling solar energy driven generation and separation of electrons and holes with high charge transfer kinetics. Covalent organic frameworks (COFs) are an emerging class of photoactive semiconductors, tunable at a molecular level for high charge carrier generation and transfer. Herein, we report two newly designed two-dimensional COFs based on a (diarylamino)benzene linker that form a Kagome (kgm) lattice and show strong visible light absorption. Their high crystallinity and large surface areas (up to 1165 m(2)center dot g(-1)) allow efficient charge transfer and diffusion. The diarylamine (donor) unit promotes strong reduction properties, enabling these COFs to efficiently reduce oxygen to form H2O2. Overall, the use of a metal-free, recyclable photocatalytic system allows efficient photocatalytic solar transformations.
Subject(s): covalent organic frameworks
redox reactions
electromagnetic radiation
Issue Date: 13-Nov-2020
Date Available: 28-Dec-2021
Language Code: en
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Sponsor/Funder: DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"
EC/H2020/665501/EU/[PEGASUS]², giving wings to your career./PEGASUS-2
EC/H2020/834134/EU/Water Forced in Hydrophobic Nano-Confinement: Tunable Solvent System/WATUSO
EC/H2020/647755/EU/First principle molecular dynamics simulations for complex chemical transformations in nanoporous materials/DYNPOR
Journal Title: Journal of the American Chemical Society
Publisher: American Chemical Society (ACS)
Volume: 142
Issue: 47
Publisher DOI: 10.1021/jacs.0c09684
Page Start: 20107
Page End: 20116
EISSN: 1520-5126
ISSN: 0002-7863
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Chemie » FG Funktionsmaterialien
Verbundforschung » Exzellenzcluster (EXC) » UniSysCat
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 8.18 MB
DownloadShow Preview

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.