Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14809
For citation please use:
Main Title: Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers
Author(s): Hegge, Friedemann
Lombeck, Florian
Ortiz, Edgar Cruz
Bohn, Luca
Holst, Miriam von
Kroschel, Matthias
Hübner, Jessica
Breitwieser, Matthias
Strasser, Peter
Vierrath, Severin
Type: Article
URI: https://depositonce.tu-berlin.de/handle/11303/16035
http://dx.doi.org/10.14279/depositonce-14809
License: https://pubs.acs.org/page/policy/authorchoice_termsofuse.html
Abstract: Significant reduction of the precious metal catalyst loading is one of the key challenges for the commercialization of proton-exchange membrane water electrolyzers. In this work we combine IrOx nanofibers with a conventional nanoparticle-based IrOx anode catalyst layer. With this hybrid design we can reduce the iridium loading by more than 80% while maintaining performance. In spite of an ultralow overall catalyst loading of 0.2 mg(Ir)/cm(2), a cell with a hybrid layer shows similar performance compared to a state-of-the-art cell with a catalyst loading of 1.2 mg(Ir)/cm(2) and clearly outperforms identically loaded reference cells with pure IrOx nanoparticle and pure nanofiber anodes. The improved performance is attributed to a combination of good electric contact and high porosity of the IrOx nanofibers with high surface area of the IrOx nanoparticles. Besides the improved performance, the hybrid layer also shows better stability in a potential cycling and a 150 h constant current test compared to an identically loaded nanoparticle reference.
Subject(s): PEM water electrolyzers
ultralow loading
durability
catalyst morphology
nanofibers
Issue Date: 10-Aug-2020
Date Available: 4-Jan-2022
Language Code: en
DDC Class: 540 Chemie und zugeordnete Wissenschaften
Sponsor/Funder: BMBF, 05KI9VFA, Ultrahochauflösende Untersuchung des Wassertransports in alkalischen Brennstoff- und Elektrolysezellen mittels Neutronenradiographie und –Tomographie (NeutroSense)
Journal Title: ACS Applied Energy Materials
Publisher: American Chemical Society (ACS)
Volume: 3
Issue: 9
Publisher DOI: 10.1021/acsaem.0c00735
Page Start: 8276
Page End: 8284
EISSN: 2574-0962
TU Affiliation(s): Fak. 2 Mathematik und Naturwissenschaften » Inst. Chemie » FG Technische Chemie / Elektrokatalyse - Materialien
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
hegge_etal_2020.pdf
Format: Adobe PDF | Size: 2.28 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.