Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-14810
For citation please use:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDionigi, Fabio-
dc.contributor.authorWeber, C. Cesar-
dc.contributor.authorPrimbs, Mathias-
dc.contributor.authorGocyla, M.-
dc.contributor.authorBonastre, A. Martinez-
dc.contributor.authorSpöri, Camillo-
dc.contributor.authorSchmies, Henrike-
dc.contributor.authorHornberger, Elisabeth-
dc.contributor.authorKühl, Stefanie-
dc.contributor.authorDrnec, J.-
dc.contributor.authorHeggen, M.-
dc.contributor.authorSharman, J.-
dc.contributor.authorDunin-Borkowski, R. Edward-
dc.contributor.authorStrasser, Peter-
dc.date.accessioned2022-01-04T10:58:35Z-
dc.date.available2022-01-04T10:58:35Z-
dc.date.issued2019-09-11-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16036-
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14810-
dc.description.abstractWe report and study the translation of exceptionally high catalytic oxygen electroreduction activities of molybdenum-doped octahedrally shaped PtNi(Mo) nanoparticles from conventional thin-film rotating disk electrode screenings (3.43 +/- 0.35 A mg(pt)(-1) at 0.9 V-RHE) to membrane electrode assembly (MEA)-based single fuel cell tests with sustained Pt mass activities of 0.45 A mg(pt)(-1) at 0.9 V-cell, one of the highest ever reported performances for advanced shaped Pt alloys in real devices. Scanning transmission electron microscopy with energy dispersive X-ray analysis (STEM-EDX) reveals that Mo preferentially occupies the Pt-rich edges and vertices of the element-anisotropic octahedral PtNi particles. Furthermore, by combining in situ wide-angle X-ray spectroscopy, X-ray fluorescence, and STEM-EDX elemental mapping with electrochemical measurements, we finally succeeded to realize high Ni retention in activated PtNiMo nanoparticles even after prolonged potential-cycling stability tests. Stability losses at the anodic potential limits were mainly attributed to the loss of the octahedral particle shape. Extending the anodic potential limits of the tests to the Pt oxidation region induced detectable Ni losses and structural changes. Our study shows on an atomic level how Mo adatoms on the surface impact the Ni surface composition, which, in turn, gives rise to the exceptionally high experimental catalytic ORR reactivity and calls for strategies on how to preserve this particular surface composition to arrive at performance stabilities comparable with state-of-the-art spherical dealloyed Pt core-shell catalysts.en
dc.description.sponsorshipEC/H2020/700127/EU/Integration of Novel Stack Components for Performance, Improved Durability and Lower Cost/INSPIREen
dc.language.isoenen
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheroxygen reduction reactionen
dc.subject.otheranisotropyen
dc.subject.othersurface dopingen
dc.subject.otheroctahedral nanoparticlesen
dc.subject.otherPtNi alloyen
dc.subject.othermembrane electrode assemblyen
dc.titleControlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalysten
dc.typeArticleen
tub.accessrights.dnbfreeen
tub.publisher.universityorinstitutionTechnische Universität Berlinen
dc.identifier.eissn1530-6992-
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1021/acs.nanolett.9b02116en
dcterms.bibliographicCitation.journaltitleNano Lettersen
dcterms.bibliographicCitation.originalpublisherplaceWashingtonen
dcterms.bibliographicCitation.volume19en
dcterms.bibliographicCitation.pageend6885en
dcterms.bibliographicCitation.pagestart6876en
dcterms.bibliographicCitation.originalpublishernameAmerican Chemical Society (ACS)en
dcterms.bibliographicCitation.issue10en
dc.identifier.pmid31510752-
tub.affiliationFak. 2 Mathematik und Naturwissenschaften » Inst. Chemie » FG Technische Chemie / Elektrokatalyse - Materialiende
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
dionigi_etal_2019.pdf

Article

Format: Adobe PDF | Size: 3.92 MB
DownloadShow Preview
Thumbnail
dionigi_etal_2019_supplement.pdf

Supporting Information

Format: Adobe PDF | Size: 1.81 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.