Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-15834
For citation please use:
For citation please use:
Main Title: | Generative deep learning for decision making in gas networks |
Author(s): | Anderson, Lovis Turner, Mark Koch, Thorsten |
Type: | Article |
URI: | https://depositonce.tu-berlin.de/handle/11303/17055 http://dx.doi.org/10.14279/depositonce-15834 |
License: | https://creativecommons.org/licenses/by/4.0/ |
Abstract: | A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. The trained generative neural network produces a feasible solution in 2.5s, and when used as a warm start solution, decreases global optimal solution time by 60.5%. |
Subject(s): | mixed-integer programming deep learning primal heuristic gas networks generative modelling |
Issue Date: | 19-Apr-2022 |
Date Available: | 18-Jul-2022 |
Language Code: | en |
DDC Class: | 510 Mathematik |
Sponsor/Funder: | TU Berlin, Open-Access-Mittel – 2022 |
Journal Title: | Mathematical Methods of Operations Research |
Publisher: | Springer Nature |
Volume: | 95 |
Publisher DOI: | 10.1007/s00186-022-00777-x |
Page Start: | 503 |
Page End: | 532 |
EISSN: | 1432-5217 |
ISSN: | 1432-2994 |
TU Affiliation(s): | Fak. 2 Mathematik und Naturwissenschaften » Inst. Mathematik » FG Software und Algorithmen für die diskrete Optimierung |
Appears in Collections: | Technische Universität Berlin » Publications |
Files in This Item:
This item is licensed under a Creative Commons License