Please use this identifier to cite or link to this item:
http://dx.doi.org/10.14279/depositonce-16021
For citation please use:
For citation please use:
Main Title: | Stochastic Modelling Approach to identify Uncertainties of Karst Conduit Networks in Carbonate Aquifers - Data |
Author(s): | Banusch, Sandra Somogyvari, Mark Sauter, Martin Renard, Philippe Engelhardt, Irina |
Type: | Generic Research Data |
URI: | https://depositonce.tu-berlin.de/handle/11303/17242 http://dx.doi.org/10.14279/depositonce-16021 |
License: | https://creativecommons.org/licenses/by-nc/4.0/ |
Abstract: | This dataset contains (1) The realizations for the five hundred 3D conduit networks (.vtk output files) generated using the SKS algorithm (Borghi et al., 2012), which form the basis for the Karst Probability Map. (2) An overview and further explanations of the parameters assigned to the Fast-Marching-Algorithm in the SKS. (3) Climate data (Precipitation, Tmin & Tmax) from 1990 to 2018 over the recharge area of the Western Mountain Aquifer (Israel & Palestinian Territories). Information on each station can be found in the file "stations". It includes data for research paper: "Banusch, S., Somogyvari, M., Sauter, M., Renard, P., Engelhardt, I. (2022). Stochastic Modelling Approach to identify Uncertainties of Karst Conduit Networks in Carbonate Aquifers" published in Water Resources Research |
Subject(s): | karst stochastic modelling |
Issue Date: | 20-Jul-2022 |
Date Available: | 20-Jul-2022 |
Language Code: | en |
DDC Class: | 551 Geologie, Hydrologie, Meteorologie |
TU Affiliation(s): | Fak. 6 Planen Bauen Umwelt » Inst. Angewandte Geowissenschaften » FG Hydrogeologie |
Appears in Collections: | Technische Universität Berlin » Research Data |
Files in This Item:
This item is licensed under a Creative Commons License