Please use this identifier to cite or link to this item:
For citation please use:
Main Title: Combining Higher Order Reflections with Diffractions without Explosion of Computation Time: The Sound Particle Radiosity Method
Author(s): Pohl, Alexander
Stephenson, Uwe M
Type: Conference Object
Abstract: The simulation of sound propagation in large rooms and urban environments is mainly performed by geometric simulation methods like ray tracing or the Sound Particle Simulation Method (SPSM). Hence, a severe deficiency is that wave effects are not included, especially if screening or diffraction effects are important. A method to introduce diffraction is the Uncertainty relation Based Diffraction (UBD) model, which has been successfully evaluated recently. To find close edges as sources of diffraction, a subdivision of the room into convex subspaces is performed by virtual walls. However, this causes a recursive split-up of Sound Particles (SPs) at each diffraction event. This effect should be compensated by a reunification of SPs. Therefore, the Sound Particle Radiosity (SPR) has been found that combines the SPSM with an advantage of the radiosity method: the re-unification of sound energy that uses a discretization of the surface into small patches. Now, SPR has been extended to 3D for the first time. To increase the available memory and to decrease the computation time, a parallelization has been implemented for the first time. First results indicate that the discretization of the virtual walls into patches yields additional but tolerable errors in the simulation of diffraction. However, even in 2D, SPR requires a huge memory. To solve this problem in 3D remains a great challenge, even more for more complex rooms. Also a method for a convex subdivision to 3D still has to be found.
Subject(s): ambisonics
sound field synthesis
spatial audio
Issue Date: 18-Mar-2014
Date Available: 18-Mar-2014
Is Part Of: 10.14279/depositonce-4103
Language Code: en
DDC Class: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Proceedings Title: Proceedings of the EAA Joint Symposium on Auralization and Ambisonics 2014
Publisher: Universitätsverlag der TU Berlin
Page Start: 119
Page End: 125
ISBN: 978-3-7983-2704-7
TU Affiliation(s): Fak. 1 Geistes- und Bildungswissenschaften » Inst. Sprache und Kommunikation » FG Audiokommunikation
Appears in Collections:Technische Universität Berlin » Publications

Files in This Item:
Format: Adobe PDF | Size: 2.94 MB
DownloadShow Preview

Item Export Bar

This item is licensed under a Creative Commons License Creative Commons