Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-2669
Main Title: On the evolution of InAs thin films grown by molecular beam epitaxy on the GaAs(001) surface
Translated Title: Über die Entwicklung dünner InAs Schichten gewachsen mittels Molekularstrahlepitaxie auf der GaAs(001) Oberfläche
Author(s): Grabowski, Jan
Advisor(s): Dähne, Mario
Granting Institution: Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
Type: Doctoral Thesis
Language: English
Language Code: en
Abstract: Halbleiternanostrukturen sind zurzeit von großem Interesse für weitreichende Anwendungen in der Elektronik und Optoelektronik. Viele dieser Bauteile, insbesondere für die optische Datenübertragung im Bereich großer Wellenlängen, die von grundlegender Bedeutung in der modernen Kommunikationstechnik ist, basieren auf InAs/GaAs-Quantenpunktstrukturen (QD). Auch wenn die Eigenschaften der InAs/GaAs-QDs bereits intensiv untersucht wurden, so ist doch immer noch nur sehr wenig über die Benetzungsschicht (WL) bekannt. Im Rahmen dieser Arbeit wurde der Verlauf der Entstehung dieses InAs-WL im Detail untersucht. Dazu wurden mittels Molekularstrahlepitaxie (MBE) dünne InAs-Schichten im Bereich einer Monolage (ML) auf die GaAs(001) Oberfläche aufgedampft und anschließend mit reflektiver hochenergetischer Elektronenbeugung (RHEED) und insbesondere mit der Rastertunnelmikroskopie (STM) untersucht. Die dünnen InAs Schichten wurden in den beiden typischen Wachstumsbereichen gewachsen, auf der GaAs-c(4×4) und der GaAs-β2(2×4) rekonstruierten Oberfläche, mit variabler Schichtdicke von Submonolagen mit 0,09 ML InAs bis zu 1,65 ML InAs, bei der die kritische Schichtdicke für das QD-Wachstum überschritten wird. Dabei wurden drei grundsätzliche Wachstumsphasen entdeckt. Bei niedrigen InAs-Bedeckungen adsorbiert das Indium bevorzugt an energetisch günstigen Positionen auf der Oberfläche in Ansammlungen von durchschnittlich acht Indiumatomen. In den STM-Aufnahmen erscheinen diese Ansammlungen als deutliche helle Signaturen. Es werden ein Strukturentwicklungsmodell vorgestellt und die elektronischen Eigenschaften sowie die Gitterverspannung diskutiert. Bei einer InAs-Bedeckung von 0,67 ML transformiert die ursprüngliche Oberfläche in eine (4×3) rekonstruierte In(2/3)Ga(1/3)As-ML und deren detaillierte Struktur und Verspannungseigenschaften werden aufgezeigt. Weiter aufgedampftes InAs bildet dann eine zweite Lage auf der InGaAs-ML, gekennzeichnet durch eine typische zick-zack Anordnung von (2×4) rekonstruierten Einheitszellen, die eine abwechselnde α2/α2-m Konfiguration besitzen. Im Gegensatz zu den vorherigen Oberflächenrekonstruktionen, bei denen die strukturelle Gitterverspannung effizient abgebaut werden kann, staut sich in dieser zweiten (2×4) rekonstruierten Schicht mit dem weiteren Einbau von Indiumatomen eine kompressive Gitterverspannung an. Wenn diese zweite Schicht vervollständigt ist, beinhaltet der resultierende doppelschichtige WL eine Gesamtmenge von 1,42 ML InAs. An diesem Punkt führt die angestaute Gitterverspannung zum Stranski - Krastanow (SK) Wachstumsübergang vom zweidimensionalen zum dreidimensionalen Wachstum, und weiteres aufgewachsenes InAs sammelt sich in typischen dreidimensionalen Inseln, den QDs. Darüber hinaus führt die Gitterverspannung im WL zur Verlagerung von Material aus dem WL in die QDs. Dieser Reifungsprozess, letztendlich auch auf Kosten von Teilen des WL, kann eingeschränkt werden, wenn das Substrat direkt nach dem Wachstum sehr schnell abgekühlt wird (quenching).
Semiconductor nanostructures are currently of high interest for a wide variety of electronic and optoelectronic applications. A large number of devices, in particular for the optical data transmission in the long-wavelength range, essential in modern communication, are based on InAs/GaAs quantum dot (QD) structures. Though the properties of the InAs/GaAs QDs have been extensively studied, only little is known about the formation and structure of the wetting layer (WL) yet. In the present work, the pathway of the InAs WL evolution is studied in detail. For this purpose, InAs thin films in the range of one monolayer (ML) are deposited on the GaAs(001) surface by molecular beam epitaxy (MBE) and studied by reflection high energy electron diffraction (RHEED) and in particular by scanning tunneling microscopy (STM). The InAs thin films are grown in both typical growth regimes, on the GaAs-c(4×4) and the GaAs-β2(2×4) reconstructed surface, in a variety of thicknesses starting from submonolayers with 0.09 ML of InAs up to 1.65 ML of InAs exceeding the critical thickness for QD growth. In principle, three growth stages are found. At low InAs coverages, the indium adsorbs in agglomerations of typically eight In atoms at energetically preferable surface sites. In the STM images, the signatures of these In agglomerations appear with a clear bright contrast. A structural model for the initial formation of these signatures is presented, and its electronic and strain related properties are discussed. At an InAs coverage of about 0.67ML the initial surface transforms into a (4×3) reconstructed In(2/3)Ga(1/3)As ML and the detailed structure and strain properties of this surface are unraveled. On top of the InGaAs ML further deposited InAs forms a second layer, characterized by a typical zig-zag alignment of (2×4) reconstructed unit cells, with an alternating α2/α2-m configuration. In contrast to the previous surface reconstructions, where structural strain is sufficiently reduced, this second (2×4) reconstructed InAs layer accumulates unfavorable amounts of compressive strain from the InAs incorporation. With a fully evolved second layer the complete two-layer WL contains a total amount of 1.42 ML of InAs. At this point, the accumulated amount of strain induces the Stranski - Krastanow (SK) growth transition from two-dimensional to three-dimensional growth, and further deposited InAs accumulates in typical three-dimensional islands, the QDs. Moreover, the unfavorable strain in the WL leads to a relocation of InAs material from the WL into the QDs. This QD ripening, eventually at the account of parts of the WL, can be reduced by rapid quenching of the substrate immediately after growth.
URI: urn:nbn:de:kobv:83-opus-28793
http://depositonce.tu-berlin.de/handle/11303/2966
http://dx.doi.org/10.14279/depositonce-2669
Exam Date: 14-Dec-2010
Issue Date: 4-Jan-2011
Date Available: 4-Jan-2011
DDC Class: 530 Physik
Subject(s): Benetzungsschicht
GaAs
In(Ga)As
Molekularstrahlepitaxie
Rastertunnelmikroskopie
GaAs
In(Ga)As
Molecular beam epitaxy
Scanning tunneling microscopy
Wetting layer
Usage rights: Terms of German Copyright Law
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 2 Mathematik und Naturwissenschaften » Institut für Festkörperphysik » Publications

Files in This Item:
File Description SizeFormat 
Dokument_34.pdf11,91 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.