Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-3604
Main Title: Eigenspannungsreduktion in strahlgeschweißten Nähten mittels Spannungsumlagerung durch den Einsatz defokussierter Elektronen- bzw. Laserstrahlen
Translated Title: Residual stress reduction in beam welds due to stress redistribution by application of defocussed electron or laser beams
Author(s): Tölle, Florian
Advisor(s): Rethmeier, Michael
Granting Institution: Technische Universität Berlin, Fakultät V - Verkehrs- und Maschinensysteme
Type: Doctoral Thesis
Language: German
Language Code: de
Abstract: Den vielen Vorteilen der Strahlschweißverfahren stehen die mit ihnen erzeugten hohen Längszugeigenspannungen in den Schweißnähten entgegen. Diese können, da sie im Bereich der lokalen Werkstoffstreckgrenze vorliegen, die Bauteillebensdauer beeinflussen. Bei anderen Schweißprozessen sind ebenfalls hohe Eigenspannungen in den Schweißnähten die Folge, jedoch überwiegen hier die Querspannungen. Für diese Schweißverfahren sind in den letzten Jahrzehnten einige Methoden entwickelt worden, um die Schweißeigenspannungen bereits während des Schweißens bzw. nach dem Schweißprozess zu reduzieren. Hierbei werden jedoch meist große Kontaktflächen auf dem Bauteil direkt neben der Schweißnaht sowie zusätzliches an das Bauteil angepasstes Equipment benötigt. Zudem zeigen die bisherigen entwickelten Verfahren für die schmalen Strahlschweißnähte eine geringe Effizienz. Der Abbau der Eigenspannungen mit der Strahlquelle, die auch für den Schweißprozess genutzt wird, bietet hier ein flexibles Werkzeug, das keine zusätzlichen Beschaffungskosten erzeugt und infolge einer Remote-Wärmebehandlung auch für komplexe Schweißnahtformen und Bauteilgeometrien anwendbar ist. Bei dieser nachträglichen Wärmebehandlung werden die Materialbereiche neben der Naht durch den defokussierten Elektronen- bzw. Laserstrahl auf Temperaturen von mehreren hundert Grad Celsius erwärmt. Hierdurch werden in diesen Bereichen geringe plastische Deformationen erzeugt. Beim Abkühlen des erwärmten Materials wird infolge der thermischen Schrumpfung das Material zwischen der Schweißnaht und den erwärmten Zonen in Nahtlängsrichtung gestaucht. Diese gestauchten Materialbereiche behinderten die Schweißnaht während der Abkühlung von der Schmelztemperatur beim thermischen Schrumpfen. Somit wird der Widerstand gegen die Schrumpfung der Schweißnaht verringert und die Eigenspannungen in der Naht können sich teilweise abbauen. Dabei bestimmt die Wahl der Wärmebehandlungsparameter die Quantität der erhaltenen Spannungsreduktion. Der genutzte Strahlradius und die Vorschubgeschwindigkeit der Wärmebehandlung entlang der Schweißnaht spielen hier eine sehr große Rolle. Aber auch der zu verwendende seitliche Abstand der Wärmebehandlung zur Schweißnaht, der sich am Strahlradius orientiert, sollte richtig gewählt sein. Für die qualitativen und quantitativen Untersuchungen des Längsspannungsabbaus in strahlgeschweißten Bauteilen mit diesem Verfahren wurde eine ganze Reihe von FEM-Simulationen durchgeführt. Diese dienen der Erläuterung des Spannungsabbaus sowie der Analyse und Bewertung der Einflussparameter. Experimentelle Untersuchungen mit dem Elektronen- sowie mit dem Laserstrahl an unterschiedlichen Werkstoffen und Schweißnahtgeometrien belegen, dass mit diesem Verfahren die hohen Längszugeigenspannungen je nach verwendetem Parametersatz so stark abgebaut werden können, dass daraus Druckeigenspannungen in der Schweißnaht resultieren können. Vor allem für die Laserstrahlanwendung, bei der ein in-situ-Wärmebehandlungsprozess während des Schweißens mit nur einem Strahl aufgrund der relativ langsamen Strahlsteuerung nicht möglich ist, ist von großer Bedeutung, dass dieses Verfahren größere Spannungsreduktionen erzielt, wenn die Schweißnaht bereits auf Umgebungstemperatur abkühlen konnte, bevor die Wärmebehandlung ausgeführt wird.
Among the multiple advantages of beam welding processes the high longitudinal residual stresses in beam welds ranging till the local yield stress are one disadvantage. These high stresses can influence the service life of the welded components. The residual stresses in other welding processes exist in an equal high level but primarily in the transverse direction to the weld. To mitigate the high residual stresses a couple of methods were developed for these welding processes in the last decades. However these methods need large contact surfaces next to the welds for the installation of matched heating and cooling elements and other additional equipment. Furthermore, the previous developed stress mitigating processes offer a low efficiency for the small beam welds. The stress reduction by using the welding source after the welding process for a remote heat treatment of the welded components afford a flexible tool for the stress mitigation in beam welds. This method does not need any additional equipment and it is applicable for complex welding and component geometries. During this post welding heat treatment the material next to the weld is heated by the defocused electron or by the defocused laser beam, respectively, to temperatures of some hundreds degree Celsius. Hereby low plastic deformations in these regions are generated. While cooling down due to the thermal shrinkage the material between the weld and the heat treated region is compressed in longitudinal direction to the weld. This intermediate material zone constrained the shrinkage of the weld while cooling down from the melting temperature and leads to the high longitudinal residual stresses in the weld. In consequence of the compression of this intermediate zones by the heat treated zones the resistance to the shrinkage of the weld is lowered and the longitudinal stresses in the weld are reduced. In the process the quantity of the stress reduction is controlled by the selection of the process parameters. The used beam radius and the travel speed of the heat treatment have a large influence in this method. However, the right selection of the transversal distance of the heat treatment to the weld is important. This distance depends on the used beam radius. For the qualitative and quantitative analyses of the reduction of the longitudinal weld stresses in this method a great many of finite element simulations were performed. The simulation results help to define the stress reduction mechanism and to analyze the parameters, which influence this method. Experimental investigations on different materials and weld geometries with the electron beam and with the laser beam verify that this method can reduce the longitudinal stresses in the weld. Depending on the used process parameters the stress reduction can lead to compressive stresses in the weld. Due to a larger stress reduction by performing the heat treatment in a separate process after the weld could cool down to ambient temperature this method is very advantageous for the laser beam application, which does not permit an in situ heat treatment while welding.
URI: urn:nbn:de:kobv:83-opus-39792
http://depositonce.tu-berlin.de/handle/11303/3901
http://dx.doi.org/10.14279/depositonce-3604
Exam Date: 30-Apr-2013
Issue Date: 27-May-2013
Date Available: 27-May-2013
DDC Class: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Subject(s): Eigenspannungen
Elektronenstrahl
Laser
Schweißen
Electron beam
Laser
Residual stress
Welding
Creative Commons License: https://creativecommons.org/licenses/by-nc-nd/3.0/de/
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 5 Verkehrs- und Maschinensysteme » Institut für Werkzeugmaschinen und Fabrikbetrieb » Publications

Files in This Item:
File Description SizeFormat 
Dokument_23.pdf6.66 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.