Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-3950
 Main Title: On sequences of integers of quadratic fields and computations Translated Title: Über Folgen ganzer Elemente in quadratischen Körpern und Berechnungen Author(s): Bircan, Nihal Advisor(s): Pohst, Michael E. Referee(s): Tröltzsch, FrediPetho, Attila Granting Institution: Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften Type: Doctoral Thesis Language: English Language Code: en Abstract: In this thesis, we consider the integers $\alpha$ of the quadratic field $\mathbb{Q} (\sqrt[]{d})$ where $d\in \Z$ is square-free and $d\equiv 1,2,3 \bmod 4$. Furthermore, let $p$ be an odd prime. Using the embedding into $\text{GL}(2,\mathbb{R})$ we obtain bounds for the first $\nu\in\N$ such that $\alpha^\nu\equiv 1\bmod p.$ For the conductor $f$, we then study the first integer $n=n(f)$ such that $\alpha^n\in\mathcal{O}_{f}$. We obtain bounds for $n(f)$ and for $n(fp^{k})$. We allow any norm $N(\alpha)\not\eq 0$. A special case is that $\alpha$ is the fundamental unit $\varepsilon$ of the real quadratic field $\mathbb{Q} (\sqrt[]{d})$. We consider matrices $A\in\text{GL}(2,\mathbb{C})$ and we show how the integers $\alpha$ of any quadratic field $\mathbb{Q} ( \sqrt[]{d})$ can be embedded in GL$(2,\mathbb{R})$ where $d=4q+r\in \mathbb{Z}$. Namely, $A$ is defined by \begin{align*} A= \text{ } \begin{pmatrix} a&b \\ bd&a \end{pmatrix}\ \text{for $r=2,3$},\ \ A=\begin{pmatrix} \tfrac{1}{2} (a+b)&b \\ qb&\tfrac{1}{2} (a-b) \end{pmatrix}\ \text{for } r=1. \end{align*} We are now interested in the $n$ such that $A^{n} =I$ or $A^{n} =cI$ in the residue field $\mathbb{Z}/ p\mathbb{Z}$ where $p$ is an odd prime. As a tool we use adapted Chebyshev polynomials $t_{n} (x;s)$ and $u_{n} (x;s)$, which are monic polynomials with integer coefficients. We can write the powers of an algebraic integer $\alpha$ as \begin{align*} \alpha ^{n} =\begin{cases} \text{ } \tfrac{1}{2} t_{n} (2a)+u_{n-1} (2a)b\sqrt{d} & \text{if } r=2,3\\ \tfrac{1}{2} t_{n} (a)+\tfrac{1}{2} u_{n-1} (a)b\sqrt{d} & \text{if } r=1. \end{cases}\end{align*} Let $s=$ det $A$ and $x=$ tr $A$. We obtain results about $A^{n}$ for all $s\neq 0$. We formulate these results in terms of $t_{n} (x;s)=$ tr $A^{n}$. Now we consider again congruences modulo $p$. In the case of the quadratic field we have $s=N(\alpha)$. The Legendre symbol $\ell\coloneqq ((x^2 -4s)/p)$ will play an important role. The values of $n$ with $A^{n}\equiv I \bmod p$ are connected with $p-1$ if $\ell=+1$ and with $p+1$ if $\ell=-1$. In particular, we prove that if $s=1$ and $x^{2}-4\not\equiv 0\bmod p$ then $t_{\frac{p-\ell}{2}} (x)\equiv 2((x+2)/p)\bmod p$ and to generalize this we determine the first $n=(p-\ell)/2^{m}$ with $t_{n} (x)\equiv 2\bmod p$ in terms of a chain of Legendre symbols. We also consider the more complicated case $s=-1$ and prove similar results. In the last chapter we consider the asymptotic behaviour of $n(p)$ by large-scale computations. Our results become easier to state if we consider the quotients $q$ defined by \begin{equation*} q= \left\{\begin{array}{lll} \frac{p\pm1}{2n(p)}& \text{if }N(\varepsilon)=+1& \text{ where } \left(\frac{d}{p}\right)=\mp1, \\ \frac {p\pm1}{n(p)} &\text{if } N(\varepsilon)=-1& \text{ where } \left(\frac{d}{p}\right)=\mp1. \end{array}\right. \end{equation*} In the computation of frequencies of $q$ we restrict ourselves to the case that $d\equiv 2,3 \bmod 4$ and we obtain numerical information about $n(f)=n(p)=\text{min}\{ \nu\in\N : \varepsilon^{\nu}\in \mathcal{O}_{p}\}$. Our numerical results suggest that the frequencies should have a limit as the ranges of $d$ and $p$ tend simultaneously to infinity. URI: urn:nbn:de:kobv:83-opus4-47264http://depositonce.tu-berlin.de/handle/11303/4247http://dx.doi.org/10.14279/depositonce-3950 Exam Date: 18-Oct-2013 Issue Date: 27-Feb-2014 Date Available: 27-Feb-2014 DDC Class: 500 Naturwissenschaften und Mathematik Subject(s): Quadratic fieldssequencesintegers of quadratic fieldsQuadratische KörperFolgenganze Elemente in quadratischen Körpern License: http://rightsstatements.org/vocab/InC/1.0/ Appears in Collections: Inst. Mathematik » Publications

Files in This Item:
File Description SizeFormat