Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-4291
Main Title: The economics of wind and solar variability
Subtitle: How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs
Translated Title: Die Ökonomik von variabler Wind- und Solarenergie
Translated Subtitle: ökonomischer Wert, optimaler Ausbau und Integrationskosten von Wind- und Solarstrom
Author(s): Hirth, Lion
Advisor(s): Edenhofer, Ottmar
Referee(s): Edenhofer, Ottmar
Bruckner, Thomas
Granting Institution: Technische Universität Berlin, Fakultät VI - Planen Bauen Umwelt
Type: Doctoral Thesis
Language: English
Language Code: en
Abstract: Die Variabilität von Wind- und Solarenergie hat signifikanten Einfluss auf Stromsysteme und Elektrizitätsmärkte, sobald diese Technologien in signifikantem Maßstab Anwendung finden. Im weltweiten Durchschnitt erzeugen solche „variablen Erneuerbaren“ heute zwar nur 2.5% der elektrischen Energie, aber alle Prognosen weisen auf eine zunehmende Bedeutung hin - und eine Reihe von Ländern erreicht schon heute Wind- und Solaranteile von 20% oder mehr. Diese Doktorarbeit trägt zu System- und Marktintegrations-Literatur bei, die die Effekte der Variabilität untersucht. Welchen Einfluss hat die Variabilität von Wind- und Solarenergie auf die Wirtschaftlichkeit dieser Technologien? Der Einfluss lässt sich in (mindestens) drei Perspektiven darstellen: als Reduktion des ökonomischen Wertes (Grenznutzen) von Windstrom, als Anstieg der Erzeugungskosten, und als Reduktion des wohlfahrts-optimalen Ausbaus. Zwischen diesen drei alternativen Perspektiven zu übersetzen ist nicht trivial, wie die Unklarheiten und Missverständnisse um das Konzept von "Integrationskosten" belegen. Deshalb die Forschungsfrage, noch einmal, präzisiert: Wie beeinflusst die Variabilität von Wind- und Solarenergie den Wert, die optimale Menge, und die Integrationskosten dieser Technologien? Diese Studie besteht aus sechs eigenständigen Artikeln. Zwei davon entwickeln einen ökonomischen Analyserahmen, in dessen Zentrum die spezifischen Eigenschaften des Gutes Strom sowie die spezifischen Eigenschaften von Wind- und Solarenergie als Stromerzeuger stehen. Im Anschluss untersuchen drei Artikel quantitative Fragen und schätzen den Wert und den optimalen Ausbau von variablen Erneuerbaren. Diese Artikel basieren auf dem dafür entwickelten numerischen Strommarktmodell EMMA, auf einer ökonometrischen Auswertung empirischer Marktdaten, sowie einer quantitativen Metastudie der publizierten Literatur. Der letzte Artikel befasst sich mit Fragen des Marktdesigns. Die zentralen Ergebnisse lassen sich wie folgt zusammenfassen. Strom ist ein spezielles ökonomisches Gut, das gleichzeitig perfekt homogen und heterogen ist. Strom ist entlang dreier Dimensionen heterogen: Zeit, Raum, und Vorlaufzeit. Diese Heterogenität ergibt sich aus der Physik von Elektrizität, insbesondere ihrer Nicht-Speicherbarkeit. Als unmittelbare Konsequenz beeinflusst die Variabilität von Wind und Solar deren Wirtschaftlichkeit. Beispielsweise ist der Wert von Windstrom bei einem Wind-Marktanteil von 30% etwa 30-50% geringer als der Wert von Strom aus einer konstanten Quelle. Diese Wertminderung ist vor allem darauf zurückzuführen, dass in einem Stromsystem mit hohem Windanteil kapitalintensive thermische Kraftwerke schlechter ausglastet sind. Der Einfluss von Variabilität lässt sich nicht nur in Wertverlust ausdrücken, sondern als Kostenanstieg, oder als Einfluss auf die optimale Menge. Der genannte Wertverlust entspricht einem Kostenanstieg von 30-50% oder einer Reduktion des optimalen Windanteils um zwei Drittel. Daraus lassen sich sieben politik-relevante Schlussfolgerungen ableiten: 1. Windkraft wird eine signifikante Rolle im zukünftigen Strommix spielen (im Vergleich zu heute). 2. Gleichzeitig wird ihre Rolle begrenzt sein (im Vergleich zu einigen politischen Ambitionen). 3. Es gibt eine Reihe von effektiven Maßnahmen, um Windkraft in Stromsysteme zu integrieren, wie Investitionen in Übertragungsnetze, Flexibilisierung von thermischen Erzeugern, und neuem Turbinendesign. Stromspeicher spielen dagegen eine untergeordnete Rolle (sind allerdings für Solarenergie relevanter). 4. Um diese Änderungen anzureizen, müssen effiziente Preissignale vorhanden sein. 5. Der Ausbau der Erneuerbaren sollte in einer angemessenen Geschwindigkeit erfolgen. 6. Variable Erneuerbare sind keine guten Komplementärtechnologien zu Kernkraft oder CCS - diese Technologien sind zu kapitalintensiv. 7. Der Ausbau der Erneuerbaren ist nicht nur eine Frage von Effizienz, sondern auch von Umverteilung. Umverteilungseffekte können quantitativ bedeutsam sein und sind möglicherweise ein zentraler politischer Treiber.
Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the "system and market integration" literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of "integration costs". Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus "dispatchable" power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly homogenous and heterogeneous along three dimensions - time, space, and lead-time. Electricity’s heterogeneity is rooted in its physics, notably the fact it cannot be stored. (Only) because of heterogeneity, the economics of wind and solar power are affected by their variability. The impact of variability, expressed in terms of marginal value, can be quite significant: for example, at 30% wind market share, electricity from wind power is worth 30-50% less than electricity from a constant source, as this study estimates. This value drop stems mainly from the fact that the capital embodied in thermal plants is utilized less in power systems with high VRE shares. Any welfare analysis of VRE needs to take electricity’s heterogeneity into account. The impact of variability on VRE cannot only be expressed in terms of marginal value, but also in terms of costs, or in terms of optimal deployment. The mentioned value drop corresponds to an increase of costs by 30-50%, or a reduction of the optimal share by two thirds. These findings lead to seven policy conclusions: 1. Wind power will play a significant role (compared to today). 2. Wind power will play a limited role (compared to some political ambitions). 3. There are many effective options to integrate wind power into power systems, including transmission investments, flexibilizing thermal generators, and advancing wind turbine design. Electricity storage, in contrast, plays a limited role (however, it can play a larger role for integrating solar). 4. For these integration measures to materialize, it is important to get both prices and policies right. Prices need to reflect marginal costs, entry barriers should be tiered down, and policy must not shield agents from incentives. 5. VRE capacity should be brought to the system at a moderate pace. 6. VRE do not go well together with nuclear power or carbon capture and storage - these technologies are too capital intensive. 7. Large-scale VRE deployment is not only an efficiency issue, but has also distributional consequences. Re-distribution can be large and might an important policy driver.
URI: urn:nbn:de:kobv:83-opus4-60065
http://depositonce.tu-berlin.de/handle/11303/4588
http://dx.doi.org/10.14279/depositonce-4291
Exam Date: 14-Nov-2014
Issue Date: 20-Jan-2015
Date Available: 20-Jan-2015
DDC Class: 333 Boden- und Energiewirtschaft
Subject(s): Windenergie
Solarenergie
Strommarkt
Integrationskosten
Intermittenz
Wind power
solar power
power system economics
integration costs
intermittency
Usage rights: Terms of German Copyright Law
Appears in Collections:Technische Universität Berlin » Fakultäten & Zentralinstitute » Fakultät 6 Planen Bauen Umwelt » Institut für Landschaftsarchitektur und Umweltplanung » Publications

Files in This Item:
File Description SizeFormat 
hirth_lion.pdf9.9 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.