Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-4390
Main Title: Effiziente hochauflösende Röntgenemissionsspektrometrie mit Synchrotronstrahlung
Translated Title: Efficient high-resolution X-ray emission spectrometry using synchrotron radiation
Author(s): Unterumsberger, Rainer
Advisor(s): Beckhoff, Burkhard
Referee(s): Kanngießer, Birgit
Erko, Alexei
Beckhoff, Burkhard
Granting Institution: Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
Type: Doctoral Thesis
Language: German
Language Code: de
Abstract: Das Ziel der vorliegenden Arbeit bestand darin, durch die Erhöhung der Sensitivität eines wellenlängendispersiven Spektrometers (WDS) im Spektralbereich weicher Röntgenstrahlung Zugang zu hochauflösender Röntgenemissionsspetrometrie an nanoskaligen Materialien leichter Elemente und Übergangsmetallen zu erhalten. Die Erhöhung der Sensitivität wurde durch eine Refokussierung der anregenden Undulatorstrahlung erreicht. Mit der erhöhten Sensitivität des WDS konnten zum einen die chemischen Spezies verschiedener, nominell 100 nm dicker Titanoxide ermittelt werden. Die Kombination aus Refokussieroptik und kalibriertem Spektrometer ermöglichte zum anderen die Detektion und Entfaltung der L-Fluoreszenzlinien von nanoskaligen Titanoxiden. Mit der Kalibrierung des Spektrometers wurde eine zuverlässige Bestimmung der bindungsabhängigen Übergangswahrscheinlichkeiten der Titan La- und Ll-Fluoreszenzlinien erreicht. Die Bestimmung der Übergangswahrscheinlichkeit in Abhängigkeit des Bindungszustandes wurde bisher nach bestem Wissen im Spektralbereich weicher Röntgenstrahlung noch nicht durchgeführt. Die Güte der Refokussierung wurde durch verschiedene Diagnostik charakterisiert. Es konnten vertikale Halbwertsbreiten von ca. 10 µm bis 20 µm und horizontale Halbwertsbreiten von ca. 12 µm bis 25 µm über ein Energiebereich von 180 eV bis 1310 eV erreicht werden. Über kalibrierte Photodioden war es möglich, sowohl die effektive Transmission der Monokapillare zu bestimmen, als auch den absoluten Photonenfluss zu überwachen. Es konnte mit Hilfe der Refokussierung experimentell eine Erhöhung des Photonenflusses um den Faktor von 4.9 erreicht werden. Durch die Erhöhung des Photonenflusses ist es möglich, nanoskaligen Materialien zu untersuchen. Anhand der Bestimmung der Nachweisgrenze von Bor Ka und Titan La konnte gezeigt dies werden. In beiden Fällen wurde eine Nachweisgrenze von 0.4 nm äquivalenter Schichtdicke (rund 1*10-7 g/cm2 bis 2*10-7 g/cm2 bzw. 3*1015 Atome/cm2 bis 5*1015 Atome/cm2). Mit dem um die Refokussierung erweiterten WDS wurde Röntgenemissionsspektrometrie an verschiedenen Titanoxiden durchgeführt. Dabei konnte die chemische Bindung anhand der hochauflösenden Röntgenemissionsspektren identifiziert werden. Zusätzlich zur Bestimmung des Bindungszustandes wurde resonante Röntgenemissionsspektroskopie durchgeführt, mit der im Prinzip Informationen über die besetzten und unbesetzten Elektronenzustände der Valenzelektronen gewonnen werden können. Um eine quantitative Analyse der Titan L-Fluoreszenzlinien durchzuführen, musste das WDS kalibriert werden. Dazu wurde das Ansprechverhalten des Spektrometers durch direkte Undulatorstrahlung experimentell bestimmt und mittels einer Modellfunktion für das Ansprechverhalten die Ansprechfunktionen für den gesamten erfassten Energiebereich modelliert und parametrisiert. Mit ihnen können die Emissionsspektren zuverlässig entfaltet werden und sie erlauben damit eine genaue Bestimmung der Fluoreszenzintensitäten. Die relativen Unsicherheiten der Intensitäten werden in dieser Arbeit mit ca. 15 % abgeschätzt. Es wurden die Übergangswahrscheinlichkeit der Titan L3-Fluoreszenzlinien in Abhängigkeit des Bindungszustandes bestimmt. Für metallisches Titan beträgt die Übergangswahrscheinlichkeit für die Titan Ll-Fluoreszenzlinie 0.59(6) und fällt dann mit steigendem Oxidationszustand ab. Bei Titandioxid beträgt die Übergangswahrscheinlichkeit für die Titan Ll-Fluoreszenzlinie lediglich 0.46(7).
The aim of the present work is to get access to high-resolution X-Ray Emission Spectrometry (XES) at nanoscaled materials, consisting of light elements and transition metals, by the increase of the sensitivity of a Wavelength-Dispersive Spectrometer (WDS) in the soft X-Ray range. The increase of the sensitivity was achieved by a refocusing of the incident radiation. With the increased sensitivity of the WDS, it was possible to determine the chemical species of different, nominal 100 nm thin titanium oxides. The combination of the refocusing optic and calibrated spectrometer enabled the detection and deconvolution of the L-fluorescence radiation of these nanoscaled titanium oxides. Due to the calibration of the spectrometer, a reliable determination of the transition probabilities of the titanium La- and Ll-fluorescence lines as a function of the chemical state is possible. To the best of my knowledge, the determination of the transition probabilities as a function of the chemical state in the soft X-Ray range has not been investigated yet. The quality of the refocusing was characterized using different diagnostic tools. Vertical full width at half maximum (FWHM) values of the focused beam between 10 µm to 20 µm and horizontal FWHM values between 12 µm and 25 µm could be achieved over an energy range of 180 eV to 1310 eV. Using calibrated photodiodes, it was possible to determine the absolute transmission of the used single bounce monocapillary as well as to monitor the absolute photon flux. By means of the refocusing, it was possible to increase the photon flux by a factor of 4.9 experimentally. The increase of the photon flux enables the analysis of nanoscaled materials with the used spectrometer. This could be shown based on the determination of the lower limit of detection of boron Ka and titanium La. In both cases, the lower limit of detection of 0.4 nm equivalent layer thickness was achieved (about 1*10-7 g/cm2 to 2*10-7 g/cm2 or 3*1015 atoms/cm2 to 5*1015 atoms/cm2 , respectively). With the spectrometer extended by the refocusing, XES at different titanium oxides could be performed. Using the high-resolution XES, the chemical species of the different titanium oxides could be identified. In addition to the chemical speciation, it is now possible to do Resonance Inelastic X-Ray Scattering (RIXS). With this method, information about the occupied and unoccupied electronic states of the valence electrons can be revealed. For a quantitative analysis of the titanium L-fluorescence lines, the WDS had to be calibrated. For this purpose, the response behavior of the spectrometer was experimental determined using direct undulator radiation. By means of a model function for the response behavior, the response functions could be modeled and parameterized for the whole covered energy range. The response functions lead to a reliable deconvolution of the emission spectra and thereby allow an accurate determination of the fluorescence intensities. In this work, the relative uncertainties of the intensities are estimated with about 15 %. The transition probabilities of the titanium L3-fluorescence lines were determined as a function of the chemical state. For metallic titanium, the transition probability of the titanium Ll-fluorescence line amounts to 0.59(6) and decreases with increasing oxidation state of the titanium. For titanium dioxide, the transition probability of the titanium Ll-fluorescence line only amounts to 0.46(7).
URI: urn:nbn:de:kobv:83-opus4-64513
http://depositonce.tu-berlin.de/handle/11303/4687
http://dx.doi.org/10.14279/depositonce-4390
Exam Date: 15-Dec-2014
Issue Date: 30-Mar-2015
Date Available: 30-Mar-2015
DDC Class: 539 Moderne Physik
Subject(s): Chemische Speziation
Monokapillare
Röntgenemissionsspektrometrie
Synchrotronstrahlung
Übergangswahrscheinlichkeiten
Chemical speciation
Monocapillary
Synchrotron radiation
Transition probabilites
X-ray emission spectrometry
Usage rights: Terms of German Copyright Law
Appears in Collections:Institut für Optik und Atomare Physik » Publications

Files in This Item:
File Description SizeFormat 
unterumsberger_rainer.pdf47.56 MBAdobe PDFThumbnail
View/Open


Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.