Please use this identifier to cite or link to this item:
Main Title: Moduli of tropical plane curves
Author(s): Brodsky, Sarah
Joswig, Michael
Morrison, Ralph
Sturmfels, Bernd
Type: Article
Language: English
Language Code: en
Abstract: We study the moduli space of metric graphs that arise from tropical plane curves. There are far fewer such graphs than tropicalizations of classical plane curves. For fixed genus g, our moduli space is a stacky fan whose cones are indexed by regular unimodular triangulations of Newton polygons with g interior lattice points. It has dimension 2g+1 unless g≤3 or g=7. We compute these spaces explicitly for g≤5.
URI: urn:nbn:de:kobv:83-opus4-69353
Issue Date: 2015
Date Available: 28-Jul-2015
DDC Class: 510 Mathematik
Subject(s): Algebraic geometry
Moduli space
Tropical curve
Tropical geometry
Journal Title: Research in the Mathematical Sciences
Publisher: Springer
Publisher Place: New York, NY [u.a.]
Volume: 2
Article Number: 4
Publisher DOI: 10.1186/s40687-014-0018-1
Notes: First published by SpringerOpen Brodsky, Sarah ; Joswig, Michael ; Morrison, Ralph ; Sturmfels, Bernd : Moduli of tropical plane curves. - In: Research in the Mathematical Sciences. - ISSN 2197-9847 (online). - 2 (2015), art. 4. - doi:10.1186/s40687-014-0018-1.
Appears in Collections:Inst. Mathematik » Publications

Files in This Item:
File Description SizeFormat 
brodsky_etal.pdf3.83 MBAdobe PDFThumbnail

This item is licensed under a Creative Commons License Creative Commons