Please use this identifier to cite or link to this item: http://dx.doi.org/10.14279/depositonce-4932
For citation please use:
Main Title: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters
Author(s): Das, Pratibhamoy
Mehrmann, Volker
Type: Article
URI: http://depositonce.tu-berlin.de/handle/11303/5238
http://dx.doi.org/10.14279/depositonce-4932
License: http://rightsstatements.org/vocab/InC/1.0/
Abstract: This paper discusses the numerical solution of 1-D convection-diffusion-reaction problems that are singularly perturbed with two small parameters using a new mesh-adaptive upwind scheme that adapts to the boundary layers. The meshes are generated by the equidistribution of a special positive monitor function. Uniform, parameter independent convergence is shown and holds even in the limit that the small parameters are zero. Numerical experiments are presented that illustrate the theoretical findings, and show that the new approach has better accuracy compared with current methods.
Subject(s): parabolic partial differential equation
convection-diffusion-reaction problem
adaptive mesh
moving mesh method
mesh equidistribution
singularly perturbed problem
upwind scheme
uniform convergence
Issue Date: 2015
Date Available: 12-Jan-2016
Language Code: en
DDC Class: 518 Numerische Analysis
Sponsor/Funder: DFG, SFB 1029, Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics
Journal Title: BIT Numerical Mathematics
Publisher: Springer
Publisher DOI: 10.1007/s10543-015-0559-8
EISSN: 1572-9125
ISSN: 0006-3835
Notes: Preprint version, the final publication is available at Springer via http://dx.doi.org/10.1007/s10543-015-0559-8
TU Affiliation(s): Verbundforschung » Sonderforschungsbereiche (SFB) » SFB 1029 - TurbIn
Appears in Collections:Technische Universit├Ąt Berlin » Publications

Files in This Item:
DasM14.pdf

Preprint

Format: Adobe PDF | Size: 1.85 MB
DownloadShow Preview
Thumbnail

Item Export Bar

Items in DepositOnce are protected by copyright, with all rights reserved, unless otherwise indicated.